Functional role of the Werner syndrome RecQ helicase in human fibroblasts

Kiranjit K. Dhillon,1,2*, Julia Sidorova,1* Yannick Saintigny,1,t Martin Poot,1,† Katherine Gollahon,1 Peter S. Rabinovitch1 and Raymond J. Monnat, Jr1,2
Departments of 1Pathology and 2Genome Science, University of Washington, Seattle, WA 98195-7705, USA

Summary

Werner syndrome is an autosomal recessive human genetic instability and cancer predisposition syndrome that also has features of premature aging. We focused on two questions related to Werner syndrome protein (WRN) function in human fibroblasts: Do WRN-deficient fibroblasts have a consistent cellular phenotype? What role does WRN play in the recovery from replication arrest? We identified consistent cell proliferation and DNA damage sensitivity defects in both primary and SV40-transformed fibroblasts from different Werner syndrome patients, and showed that these defects could be revealed by acute depletion of WRN protein. Mechanistic analysis of the role of WRN in recovery from replication arrest indicated that WRN acts to repair damage resulting from replication arrest, rather than to prevent the disruption or breakage of stalled replication forks. These results identify readily quantified cell phenotypes that result from WRN loss in human fibroblasts; delineate the impact of cell transformation on the expression of these phenotypes; and define a mechanistic role for WRN in the recovery from replication arrest.

Key words: DNA repair; DNA replication; homologous recombination; premature aging; RecQ helicase; Werner syndrome.

Introduction

Werner syndrome (WS) is an autosomal recessive human genetic instability and cancer predisposition syndrome with features of premature aging. WS patients begin to develop the appearance of premature aging as young adults, together with an increased risk of age-associated diseases such as cancer, atherosclerotic vascular disease, diabetes mellitus, and osteoporosis (Epstein et al., 1966; Goto, 1997). The resemblance of WS to accelerated normal aging has focused attention on understanding the molecular and cellular basis of WS. The presumption is that a deep understanding of WRN function at the cellular and organismal level will provide useful mechanistic insights into the biology of aging and the pathogenesis of clinically important, age-associated diseases (Kipling et al., 2004; Monnat & Saintigny, 2004).

The WRN gene was identified by positional cloning in 1996, and found to encode a member of the human RecQ helicase protein family (WRN or RECQL2; Yu et al., 1996). Two other human RecQ helicase deficiency syndromes are also genetic instability and cancer predisposition syndromes. Loss of BLM or RECQL3 results in Bloom syndrome (Ellis et al., 1995), while mutations in RECQL4 lead to Rothmund–Thomson syndrome (Kitao et al., 1999; Wang et al., 2003). RecQ helicases appear to regulate genome stability and cell viability in many organisms (Hickson, 2003; Khakhhar et al., 2003; Opresko et al., 2004). However, it is not clear how these effects are mediated, or whether they involve common mechanistic pathways in different organisms.

Cellular defects in WS were first identified in fibroblasts (Epstein et al., 1966; Martin et al., 1970), and it appears that fibroblasts and other mesenchymal cell lineages may be particularly sensitive to the loss of WRN function (Epstein et al., 1966; Masuda et al., 2001; Monnat & Saintigny, 2004). The presence of chromosomal translocations, deletions and re-arrangements in primary WS fibroblast and lymphocyte cultures led to the suggestion that WS was a chromosomal instability syndrome (Hoehn et al., 1975; Salk et al., 1985), and that the cellular phenotype of WS might be an expression of constitutive genomic instability. Subsequent analyses revealed that the chromosomal instability of WS cells could be accentuated by DNA damage (Gebhart et al., 1988), and that WRN-deficient cells were selectively sensitive to killing by 4-nitroquinoline 1-oxide (4-NQO; Gebhart et al., 1985; Ogburn et al., 1997; Prince et al., 1999; Hisama et al., 2000); by camptothecin, a DNA topoisomerase I inhibitor (Okada et al., 1998; Poot et al., 1999); and most notably and strongly by DNA cross linking drugs such as cis-platinum (cis-Pt), mitomycin-C, or 8-methoxypsoralen + UV light (8-MOP+UV; Poot et al., 2001, 2002a).

In order to better understand WRN function in human cells, we systematically analyzed cell proliferation, DNA damage sensitivity and homology-dependent recombination in primary and SV40-transformed WS fibroblasts. We also determined...
which of these measures could be modified or revealed by acute depletion of WRN. Finally, we analyzed the mechanistic role of WRN in the recovery from DNA replication arrest. The results of these experiments identify consistent, readily quantified cell phenotypes that accompany WRN loss, and provide new information on the mechanistic origin of these phenotypes in human fibroblasts.

Results

WS fibroblasts display consistent cell proliferation and cell survival defects

We used complementary colony-size distribution (CSD; Smith et al., 1978), colony-forming efficiency (CFE) and proliferative survival (Poot et al., 2002b) assays to analyze the survival and proliferation of primary and SV40-transformed fibroblasts that had been mutation typed and shown to lack WRN protein (Prince et al., 1999; Moser et al., 2000; Huang et al., 2006; additional results not shown). Primary WS fibroblasts showed a marked reduction in median colony cell number in CSD assays as well as a reduced CFE in the absence of exogenous DNA damage. These measures were not sensitive to growth interval, and thus reflect an intrinsic reduction in cell division probability of WRN-deficient fibroblasts. This proliferation defect could be further accentuated by DNA damaging agents such as cis-Pt that selectively kill WRN-deficient cells in a dose- and exposure time-dependent manner (Fig. 1a; Poot et al., 1999, 2002a; Saintigny et al., 2002; additional results not shown). The proliferative survival of two of three WS cell strains over 72 h after 8-MOP+UV damage was also markedly suppressed as compared with controls (Supplementary Fig. S1). 8-MOP preferentially forms DNA-interstrand cross links after UV irradiation (Hearst et al., 1984). These results document the presence of a proliferative defect and DNA cross-link sensitivity in primary WS fibroblasts that is not suppressed by SV40 transformation (Saintigny et al., 2002).

Acute WRN depletion reveals WS cellular phenotype

In order to better define the WS cell phenotype in an isogenic background, we characterized the phenotype of primary and SV40-transformed control (WRN+) fibroblasts after acute WRN depletion. This approach has the virtue of starting with WRN+ cells and thus minimizes changes due to genomic instability in WRN-deficient cells and, thus, has the potential to more directly reveal the consequences of WRN loss. WRN depletion from primary and SV40-transformed control fibroblasts was mediated by retroviral expression of a WRN-targeted short hairpin RNA (shRNA; Grandori et al. 2003). Western blot analysis was used to determine the time course of WRN depletion, which was nearly complete for both SV40-transformed and primary fibroblasts: 93 to 99% depletion from SV40 fibroblasts over days 4–15 after shRNA expression (Fig. 2a), and up to 95% depletion from primary fibroblasts over days 4–11 after shRNA expression vs. either a vector-only control or a scrambled sequence control shRNA (additional data not shown). The half-life of WRN protein in these experiments, estimated from a simple first order exponential decay model, was ∼19 h for SV40 fibroblasts and ∼54 h for primary fibroblasts. Our WRN half-life estimate for primary fibroblasts is virtually identical to the half-life that can be calculated from the data of Szekley et al. who transfected primary fibroblasts with a synthesized small interfering RNA (2005).

In order to determine cell survival and recombination in WRN-depleted fibroblasts we treated control SV40-transformed fibroblasts containing an integrated copy of the pNeoA recombination reporter plasmid (Fig. 2b) with 2 μM cis-Pt for 24 h on day 6, when ≤1% of wild-type WRN protein remained, and then determined cell survival and neo+ recombinant colony generation. WRN-depleted fibroblasts had a threefold reduction in cell survival as measured by CFE, and a fourfold reduction in the ability to generate recombination-dependent, G418-resistant expression.
(neo+) colonies as compared with controls (Fig. 2c,d). WRN depletion from primary fibroblasts was strongly growth suppressive, to a level comparable to that observed in primary WS fibroblasts (Fig. 3a). This proliferative defect was accompanied by an increase in the frequency of cells that stained for senescence-associated β-galactosidase (SA-β-gal) activity (Dimri et al., 1995) to levels observed in primary WS fibroblast controls (Fig. 3b). Comparable results were observed in independent experiments that used primary fibroblast cell strains from two different donors (Fig. 3b).

In order to determine whether the growth suppression and increase in SA-β-gal+ primary fibroblasts was accompanied by an acute DNA damage response (d’Adda di Fagagna et al., 2003; Szekely et al., 2005), we immunostained cells to identify nuclear foci formed by the acute DNA damage markers γH2AX and phosphoThr68-CHK2 (Ahn et al., 2004; Thiriet & Hayes, 2005). Co-immunostaining was used to identify cells in which the two proteins colocalized to form large nuclear foci. This provides a robust measure that is likely to be damage specific, and can be readily distinguished from small, spontaneous γH2AX foci that are often seen in the absence of exogenous DNA damage. There was a 2.5-fold increase in the frequency of focus-positive cells after γH2AX/pCHK2 focus after WRN RNAi). (d) Percentage of focus-positive, colocalizing cells after 7 days of WRN depletion. An average of 146 cells per sample were counted (range 70–197 cells). Differences in frequency of focus (+) cells between WS and control cells were statistically significant in all pairwise comparisons (χ^2 values ≥ 5.5, $P \leq 0.02$ with 1 degree of freedom and Yates’ correction). Both shRNA-depleted cell populations showed consistent increases in focus frequency, but did not reach statistical significance at the $P \leq 0.1$ level: $\chi^2 = 1.38$, $P = 0.2$ (C1 vs RNAi) and 2.63, $P = 0.11$ (C2 vs RNAi). Key: primary control human fibroblast cell strains were 71-95 (C1) and 78-89 (C2); primary WS fibroblast cell strains were 73-26 (W1) and AG000780G (W2).
Role of WRN in recovery from replication arrest

RecQ helicases have been proposed to play an important role in maintaining genomic stability and cell viability in response to replication arrest (Courcelle & Hanawalt, 1999; Doe et al., 2000; Pichierri et al., 2001; Oakley & Hickson, 2002). In order to further explore the role of WRN in replication arrest and recovery, we quantified DNA breakage, cell survival and the induction of recombination-dependent colony formation after reversible, hydroxyurea (HU)-mediated replication arrest. In contrast to cis-Pt damage, HU strongly induced recombinant colony formation only after 12 h or more of replication arrest. WS cells were profoundly recombination deficient at all time points after this 12-h ‘silent interval’ (Fig. 4a,b), a difference that cannot be explained by the differential killing of WS cells by HU (Fig. 4c). These results indicate that WRN is required for efficient recombinant colony generation, although not for fibroblast survival, after HU-mediated replication arrest.

In order to further elucidate the role of WRN in replication arrest recovery, we quantified DNA breakage and recombinant DNA molecule formation in WS-deficient and control cells. DNA breakage in HU-arrested WS and control SV40 fibroblasts was quantified by Western blot analysis of γH2AX generation, a marker of DNA breakage. The γH2AX content of asynchronous control cells rose 3–4-fold and remained at this level for up to 12 h of HU-mediated arrest, after which γH2AX levels rose to ∼10-fold above baseline. The γH2AX content of WS cells, in contrast, did not rise in the initial 6 h after HU arrest and never rose to ≥3-fold above background after up to 24 h of HU arrest (Fig. 5a,b). Control

recombinant molecule formation in WRN-deficient and control cells. DNA breakage in HU-arrested WS and control SV40 fibroblasts was quantified by Western blot analysis of γH2AX generation, a marker of DNA breakage.

The γH2AX content of asynchronous control cells rose 3–4-fold and remained at this level for up to 12 h of HU-mediated arrest, after which γH2AX levels rose to ∼10-fold above baseline. The γH2AX content of WS cells, in contrast, did not rise in the initial 6 h after HU arrest and never rose to ≥3-fold above background after up to 24 h of HU arrest (Fig. 5a,b). Control

Control

Journal compilation © Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland 2006
cells have a higher S-phase fraction than do WS cells (50.6% for control cells over 24 h vs. 32.9% for WS cells; data not shown). Thus, in order to allow a direct comparison of DNA breakage in WS and control cells with comparable S-phase fractions, we repeated these experiments using mimoseine-synchronized cell populations. When synchronized cultures were used, we observed no difference in γH2AX induction between WS and control cells over the first 8 h of HU arrest. At ≥ 12 h of arrest, control cells had a 2-fold higher level of γH2AX than did WS cells (Fig. 5c).

We observed no difference between WS and control fibroblasts in the generation of recombinant DNA molecules identified by β-galactosidase staining of pLrec cells (Fig. 5e). This is in contrast to the marked reduction in recombination-dependent, G418-resistant colony formation in WS, although not in control, pNeoA SV40 fibroblasts after cis-Pt damage or HU-mediated replication arrest (Fig. 4a,b). This apparent discrepancy in the behavior of the superficially similar pNeoA (Fig. 2b) and pLrec (Fig. 5d) recombination reporters is explained by different requirements of the two reporters to score recombinant events: pNeoA requires recombination and cell division to form recombinant G418-resistant colonies, while pLrec recombinants can be identified prior to, as well as after cell division by cytochemical staining for β-galactosidase activity. An analysis of spontaneous recombination in WS and control SV40 fibroblasts using pLrec and pNeoA, in which comparable results were obtained here, allowed us to identify a recombination defect in WS cells at resolution, when recombinant DNA molecules are topologically resolved and segregated to give rise to viable daughter cells (Prince et al., 2001).

The recombination reporter and γH2AX induction data shown in Figs 4 and 5 indicate that DNA breakage and DNA breakage-induced recombination is comparable in WS and control cells over 8–12 h after HU-mediated replication arrest. Moreover, the differential behavior of WS cells containing pNeoA or pLrec after HU-mediated replication arrest (cf. Fig. 4a,b with Fig. 5e) identify the same recombination resolution defect previously observed in WS for both spontaneous and cis-Pt-induced recombination (Prince et al., 2001; Saintigny et al., 2002).

Discussion

The cellular phenotype of WS has been most extensively studied in fibroblasts. This reflects the ease with which fibroblasts can be grown; early documentation of a proliferative defect in WS fibroblast cultures in conjunction with evidence for strong clonal succession (Epstein et al., 1966; Martin et al., 1970; Hoehn et al., 1975; Salk et al., 1981); and indications that fibroblasts and other mesenchymal cell lineages may be disproportionately affected in WS patients (Masuda et al., 2001).

Our experiments used complementary cell survival and proliferation assays to characterize the cell division defect of WS primary and SV40-transformed WS fibroblasts, and to demonstrate the selective sensitivity of primary and SV40-transformed WS fibroblasts to cis-Pt and to 8-MOP+UV light-mediated DNA damage (Fig. 1; Supplementary Fig. S1). Acute shRNA-mediated depletion of WRN, to levels observed in WS patient cells (≤ 5% of wild-type levels), was used to demonstrate that cell survival and recombination-dependent colony generation after cis-Pt damage depended directly upon WRN function (Fig. 2). In comparable experiments using primary fibroblasts, acute shRNA-mediated depletion of WRN was strongly growth suppressive and increased the frequency of cells expressing SA-β-gal activity and DNA damage-induced nuclear foci (Fig. 3). These results thus confirm and extend previous work from our and other laboratories (Grandori et al., 2003; Szekely et al., 2005), and delineate cellular phenotypes that result from acute WRN loss as opposed to secondary mutations or adaptation.

Many analyses of the WS cell phenotype have been performed using SV40-transformed fibroblasts. SV40 T antigen deregulates cell cycle entry to promote unscheduled DNA replication via its effects on Rb and p53, and may alter several cell cycle checkpoints (Ahuja et al., 2005). The persistence of constitutional genomic instability in SV40-transformed WS fibroblasts suggests that SV40 transformation confers a growth advantage on primary WS fibroblasts by suppressing the consequences of WRN loss, rather than by suppressing the constitutional genetic instability or DNA-damage sensitivity of primary WS cells (Fig. 1; Supplementary Fig. S1). Telomerase immortalization of WS fibroblasts, in contrast, suppresses both the 4-NQO sensitivity and cell proliferation defect of WS fibroblasts (Hisama et al., 2000; Wyllie et al., 2000). This appears to reflect important functional interactions between WRN and telomerase (see below). Thus, it is important to take into account the mechanism by which cell transformation modifies cell phenotype before drawing mechanistic conclusions about the underlying defect in WS cells.

WRN plays an important role in the postsynaptic or resolution phase of homology-dependent recombination (HDR; Prince et al., 2001; Saintigny et al., 2002), and maintains telomeres with the suppression of telomere sister chromatid exchanges and/or loss (Chang et al., 2004; Crabbe et al., 2004; Du et al., 2004; Opresko et al., 2004b; Laud et al., 2005). These observations suggest that there may be common substrates for WRN function in chromosomes and at telomeres such as 3-stranded DNA and, forked D- or T-loops that share common structures and are in vitro substrates for WRN (reviewed in Bachrati & Hickson, 2003; Opresko et al., 2004a, 2005). Work with human fibroblasts and in mouse models of WS indicate that short or critically short telomeres may trigger a requirement for WRN function (Chang et al., 2004; Crabbe et al., 2004; Du et al., 2004; Laud et al., 2005). These experiments also indicate that WRN function at telomeres may require only the helicase activity of WRN, in contrast to the role of WRN in HDR where the WRN exonuclease and helicase activities are both required (Bai & Murnane, 2003; Crabbe et al., 2004; Swanson et al., 2004; Laud et al., 2005).

WRN has long been suspected of playing a role in replication arrest recovery (Picielli et al., 2001; Oakley & Hickson, 2002). The observation that HU-mediated replication arrest strongly induced recombination-dependent colony formation by control cells (although not by WS) provided a way to further explore this
postulated role for WRN. Analysis of this HU-induced recombination defect of WS cells revealed no difference between WS and control cells in HU sensitivity, in DNA breakage or in the generation of recombinant DNA molecules after HU-mediated replication arrest (Figs 4 and 5). These data indicate that WRN likely acts late in replication arrest recovery, rather than early to limit DNA breakage or attenuate cell death. A late role for WRN in replication arrest recovery is thus consistent with the previously identified role of WRN in HDR, a repair pathway that can be used to fix DNA double strand breaks and restart disrupted replication forks (Prince et al., 2001; Oakley & Hickson, 2002; Saintigny et al., 2002; Helleday, 2003).

We observed no difference in the survival of WS and control fibroblast lineage cells in HU arrest-recovery experiments up to 30 h of HU arrest (Fig. 4c). This is in contrast to previous reports that ≥2 h of HU-mediated replication arrest rapidly and selectively killed WRN-deficient lymphoblastoid cell lines (Pichiari et al., 2001). One simple explanation for this difference is that lymphoblastoid cell lines are more likely to undergo apoptosis in response to DNA damage than are fibroblasts (see, for example, Poot et al., 2002a). Thus cell type- or cell lineage-specific effects may be important modifiers of the in vivo consequences of WRN loss of function.

How might the loss of WRN function in HDR or in telomere maintenance lead to the WS clinical phenotype? One likely explanation is that WRN loss promotes genetic instability, telomere shortening and cell loss in many cell lineages, with the progressive accumulation of mutant and senescent cells during adult life (Kipling et al., 2004; Monnat & Saintigny, 2004; Campisi, 2005; Herbig et al., 2006, Herbig & Sedivy, 2006). Fibroblasts and other mesenchymal lineage cells may be particularly sensitive to these consequences of WRN loss of function: they serve important mechanical and trophic functions in many tissues and organs; retain replicative potential throughout life; are refractory to damage-induced cell killing; and may be sensitive to both telomere loss-induced and telomere loss-independent senescence (Herbig et al., 2006; Herbig & Sedivy 2006). Thus several drivers of in vivo senescence in WS patients that could be exacerbated by DNA damage – genetic instability, mutation accumulation and increased cell loss – may be promoting the pathogenesis of cancer and other age-associated diseases in WS patients (Goto et al., 1996; Monnat, 2001, 2002).

Experimental procedures

Cells and cell culture

Primary WS and control fibroblast strains were isolated at the University of Washington (Seattle, WA, USA) or obtained from the Coriell Institute Cell Repositories (Camden, NJ, USA) and were WRN mutation typed by the Werner Syndrome International Registry (www.pathology.washington.edu/research/werner/Huang et al., 2006). WS strains 73-24, 73-26, and AOMOR1010 were homozygous for an IVS25-1G>C mutation. Strain AG00780G was homozygous for a c.1336C>T mutation that lead to prema-
ture translation termination. Control fibroblast strains 71-95, 78-89, 88-1, and 82-6 have been previously described (Oshima et al., 1995; Poot et al., 2002a). SV40-transformed WS and control fibroblast cell lines were obtained from the Coriell Institute Cell Repositories or from Dr Robin Holliday (WS cell line WV1). WS cell line AG11395 was derived from WS fibroblast strain AG00780G (Saito & Moses, 1991). WS cell line WV1 (Huschtscha et al., 1986) contains a c.3004delG mutation that leads to a frameshift and premature translation termination of WRN. All cell strains or lines were grown as adherent monolayers in Dulbecco’s modified minimal essential medium (DMEM) supplemented with 2 mM L-glutamine and 10% fetal bovine serum (HyClone, Ogden, UT, USA) in a humidified 5% CO2, 37 ℃ incubator. Cell lines were periodically screened to verify the absence of Mycoplasma infection by use of a polymerase chain reaction (PCR)-based screening assay.

Drugs and dyes

Stock solutions of cis-Pt (2 mM in 0.9% NaCl), hydroxyurea (1 M in phosphate-buffered saline) and 5-bromodeoxyuridine (BrdU; 10 mM in sterile water) were stored at −20 ℃ until use. Stocks of Hoechst 33258 (10 mM) and ethidium bromide (200 μg ml−1) were prepared in sterile water and stored at 4 ℃ in the dark until use. Mimosine (10 mM) was prepared and stored in growth media at 4 ℃ until use. All chemicals were obtained from Sigma (St. Louis, MO, USA).

Cell growth, survival and recombination assays

Colonial-size distribution and colony-forming efficiency assays were performed as previously described (Saintigny et al., 2002). Recombination frequency assays were performed as previously described (Prince et al., 2001; Saintigny et al., 2002). Newly induced Lac+ recombinant cells were identified by cytochemical staining of SV40 transformed WS or control fibroblast cell lines containing single integrated copies of the recombination reporter plasmid pLrec as previously described (Prince et al., 2001). The frequency of newly induced Lac+ cells was calculated by determining the difference in frequencies of Lac+ cells observed prior to and following treatment with 2 μm cis-Pt or 1 mM hydroxyurea.

Short hairpin RNA-mediated depletion of WRN

Depletion of WRN protein was achieved by retroviral expression of a WRN-targeted shRNA from the H1 RNA promoter of retroviral vector pBABEpuro as previously described (GrandoE et al., 2003). Retrovirus was generated by transient transfection of 293T ΦNX amphotropic packaging cells. Control SV40-transformed fibroblasts (GM639pNeoA) transduced with pBABEpuro-shWRN, pBABEPuro vector, or a pBABEpuro vector expressing a scrambled sequence shRNA were placed on puromycin selection (1 μg ml−1) at 48 h after infection. The estimated half-life of WRN was calculated using a simple
first-order decay model from Western blot data of WRN protein content over the time course of depletion.

Western blot analyses

WRN depletion was quantified using whole cell extracts as previously described (Swanson et al., 2004). Proteins were resolved on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by immunoblotting using WRN-specific (BD Transduction Laboratories no. 611168) and actin-specific or GAPDH-specific loading control antibodies (Abcam Ltd., Cambridge, UK, ab2672 or ab9482, respectively). γH2AX protein content was determined by Western blot analysis of whole cell lysates that had been prepared by boiling cells in 1× Laemmli buffer for 10 min. Lysates were cleared by centrifugation, then separated by electrophoresis through 15% SDS-PAGE gels. Proteins were transferred onto nitrocellulose membrane (Bio-Rad, Richmond, CA, USA), blocked in TBS-T buffer containing 5% non-fat milk, and probed with mouse anti-γH2AX (Upstate no. 05-636) and mouse anti-actin antibodies (see above). Detection of bound antibodies was done using a horseradish peroxidase (HRP)-conjugated goat anti-mouse antibody (Southern Biotechnology Associates, Birmingham, AL, USA), blocked in TBS-T buffer containing 5% non-fat milk, and probed with mouse anti-γH2AX (Upstate no. 05-636) and mouse anti-actin antibodies (see above). Data were visualized and quantified using a Storm Phosphorimager and ImageQuant software (Molecular Dynamics, Sunnyvale, CA, USA). In brief, signal intensities within lanes were corrected for lane- or band-specific background, and then normalized between lanes by use of actin or GAPDH loading controls.

Proliferative survival and cell-cycle distribution assays

Proliferative survival was determined by continuous BrdU labeling as previously described (Poot et al., 2002b). Absolute cell numbers were determined by comparison with an internal chicken erythrocyte nuclei (CEN) standard. Cells were harvested by trypsinization, and combined with media containing floating cells. Cell pellets were resuspended in 0.5 mL FACS buffer (100 mM Tris-HCl pH 7.4, 154 mM NaCl, 1 mM CaCl₂, 0.5 mM MgCl₂, 0.2% bovine serum albumin, and 0.1% Nonidet P-40) supplemented with 2 μM Hoechst 33258 and 15 000 CEN (Riese Enterprises, Grass Valley, CA, USA), then incubated for 15 min at room temperature. Ethidium bromide was added to a final concentration of 15% SDS-PAGE gels. Proteins were transferred onto nitrocellulose membrane (Bio-Rad, Richmond, CA, USA), blocked in TBS-T buffer containing 5% non-fat milk, and probed with mouse anti-γH2AX (Upstate no. 05-636) and mouse anti-actin antibodies (see above). Detection of bound antibodies was done using a horseradish peroxidase (HRP)-conjugated goat anti-mouse antibody (Southern Biotechnology Associates, Birmingham, AL, USA), blocked in TBS-T buffer containing 5% non-fat milk, and probed with mouse anti-γH2AX (Upstate no. 05-636) and mouse anti-actin antibodies (see above). Data were visualized and quantified using a Storm Phosphorimager and ImageQuant software (Molecular Dynamics, Sunnyvale, CA, USA). In brief, signal intensities within lanes were corrected for lane- or band-specific background, and then normalized between lanes by use of actin or GAPDH loading controls.

Immunofluorescence microscopy

Immunofluorescence staining of cells with mouse anti-γH2AX (Upstate no. 05-636) and rabbit Thr68 phosphorylation-specific CHK2 (Cell Signaling, Beverly, MA, USA; no. 2661) antibodies was done according to manufacturer’s recommendations. Secondary antibodies were Alexa 594-conjugated goat anti-rabbit (Molecular Dynamics, A11012) and FITC-conjugated donkey anti-mouse (Jackson Laboratories, West Grove, PA, USA; 715-095-151). The criteria for colocalization was the presence of both secondary antibody signals in the same nuclear volume of optical sections generated on the Zeiss Axiovert 200 confocal microscope. Image capture was done using a Zeiss Apotome digital camera and software. The best exposure time was determined for each channel and then used to acquire all subsequent images of optical sections. Images were exported as JPG files, opened in Adobe Photoshop and adjusted to a consistent image brightness prior to cropping to generate figures. No additional image processing was performed. The significance of differences in the frequency of colocalizing foci was determined by a χ²-test employing 1 degree of freedom and Yates’ correction.

Acknowledgments

We thank Dr. Brian Kennedy for use of his confocal microscope, and Alden Hackmann for graphics support. This work was supported by grants from the Nippon Boehringer Ingelheim Virtual Research Institute on Aging and the National Cancer Institute to R.J.M. Jr. This manuscript is dedicated to Dr. Robert W. Miller of the US National Cancer Institute, a Werner syndrome enthusiast, colleague and friend who died 23 February 2006.

References

Supplementary material

The following supplementary material is available for this article:

Fig. S1 8-Methoxypsoralen sensitivity of primary WS fibroblasts. (a–c) Proliferative survival of WS and control primary fibroblast strain pairs, matched for proliferative rate, over 72 h after 8-MOP+UV light treatment. Cell strain pairs were (a): 73-26 (W) and 71-95 (C); (b): AOMOR1010 (W) and 82-6 (C); and (c): AG00780G (W) and 78-89 (C). Error bars indicate standard deviations of triplicate experiments. These data have been reanalyzed and redrawn from data previously published in part (Poot et al., 2002a).

This material is available as part of the online article from:

(This link will take you to the article abstract).

Please note: Blackwell Publishing are not responsible for the content of functionality of any supplementary materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.